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Abstract

An improved knowledge of nuclear fuel can be gained from a better description of atomic-scale processes such as point defects behav-
iour under irradiation. In these perspectives, computer simulation techniques involving semi-empirical potentials can play a major role as
they allow studying some of these processes separately. The range of applicability in static calculations of the available interatomic poten-
tials for UO2 has been previously assessed by the authors. This study complements the static calculations by including dynamical sim-
ulations of the temperature evolution of different elastic properties (lattice parameter, specific heat, bulk modulus and Gruneisen
parameter) and by calculations of bulk melting temperature.
� 2008 Elsevier B.V. All rights reserved.

PACS: 31.15.Qg; 34.20.Cf; 61.72.�y; 61.72.Ji; 66.30.Hs; 71.15.Pd; 83.10.Rp
1. Introduction

The evolution of the nuclear fuel, under irradiation or in
storage repository, is affected by many phenomena that
cannot always be isolated experimentally. Computer simu-
lations are a way to avoid such complications, as isolated
processes can be simulated. Techniques involving inter-
atomic potentials are in this context very promising. They
allow determining structure information, such as defect
properties working at 0 K with a limited number of atoms,
but they can also be used to determine the evolution of a
larger system under different conditions of pressure, vol-
ume or temperature.

In a previous article [1] we already estimated the range
of applicability of the different potentials developed for
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UO2 using static calculations. We could determine various
elastic and defect properties, at zero temperature. With this
article, we will complete this study including the dynamical
behaviour of UO2. Molecular dynamics simulations have
been performed under different conditions of temperature
and volume in order to analyze the temperature evolution
of several thermodynamic properties up to 3000 K: lattice
parameter, specific heat, bulk modulus and Gruneisen
parameter. The second stage of this study was the analysis
of the predicted melting temperature. For computation
time reasons, shell–core MD being about ten times slower
than MD with rigid ion potentials, this stage was only per-
formed for five rigid ion potentials: Basak, Karakasidis,
Morelon, Walker, Yamada. For clarity, rigid ion potentials
will be written in italic, shell–core potentials in bold in the
text; on the figures, crosses will be used for rigid ion poten-
tials with non-formal charges, open symbols for rigid ion
potentials with formal charges and full symbols for shell–
core potentials.
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Fig. 1. Addition of a repulsive term to the O–O potential. The coulombic
term is included in the potential function.
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2. Calculation technique

2.1. Interatomic potentials

A molecular dynamics (MD) simulation allows deter-
mining the time-evolution of a system of atoms. In order
to perform such a simulation the forces acting on each
atom are derived from an effective interatomic potential,
describing in a simple way atomic interactions. The same
formalism is used in energy minimisation techniques (cf.
the first part of this work [1]) but in that case the inter-
atomic potential serves to find configurations presenting
a local minimum of energy.

Two models accounting for atomic description have
been considered by the different authors having developed
potentials for UO2 [2–16]. The first one is the rigid ion
model, which describes atoms as massive point charges
interacting by electrostatic interactions and a short-range
potential. The second model is the shell–core model [17]
which describes atoms as one massive point charge – repre-
senting the nucleus and the inner electron shells – bound by
a spring to a massless shell – representing the valence elec-
tron shell. In this model the electrostatic interactions act
between both species, but the short-range potential acts
between shells only. With both models, interactions
between ions have been formulated in terms of a short-
range potential in addition to the long-range coulombic
interactions. Three different forms of short-range potentials
have been used by these authors: Buckingham, Bucking-
ham-4-ranges and Buckingham + Morse potentials.

The most used was the Buckingham potential

V ijðrÞ ¼ Aij exp � r
qij

 !
� Cij

r6
; ð1Þ

where r is the distance between atoms i and j. The Bucking-
ham form yields unphysical attraction at very short dis-
tance because of the 1/r6 term. This zone is separated
from the ‘conventional’ zone by an energy barrier whose
location and height depends on the potential parameters.
These short distances being potentially reached in MD runs
at high temperature, care has to be taken in order to avoid
entering this unphysical zone.

The problem of entering the unphysical region appeared
in some of our simulations – with the following potentials:
Catlow1, Catlow2, Jackson1, Jackson2, Karakasidis,
Lewis_a, Meis2, Sindzingre, Tharmalingam1, Walker – at
higher than they were initially developed for. To overcome
this problem, we ‘hardened’ the potentials by the addition
of a strong repulsive term at very short distance to the O–O
and/or O–U interactions of the problematic potentials,
with the form

V repulsðrÞ ¼ A � exp
r
q

� �
ð2Þ

where we used the following values: A = 1.0 � 1012 eV and
q = 0.06 Å. This additional term provides a sufficiently
high energy barrier at small separation and, at the same
time, does not affect the potential at ‘normal’ distances
(see Fig. 1), in perfect lattice and defect configurations.
This has been checked by repeating the static calculations
of lattice parameter, elastic constants and defect properties
with the modified potential. Less than 1% difference with
the original potential predictions (see [1]) was observed.

An interesting point to note is that previous authors
[9,18] made simulations at high temperatures with the
Karakasidis and Jackson2 potentials and did not encounter
this problem. It has been suggested by Karakasidis [19] that
a too large timestep or a too low number of reciprocal-
space vectors used in the Ewald summation can be respon-
sible for it, but modifications of these parameters did not
result in any improvement of our simulations.

Different authors avoided this problem during the
potential development using a ‘Buckingham-4 ranges’
potential, defined by intervals

V ijðrÞ ¼

Aij exp � r
qij

� �
ifr 6 r1;

5th-degree polynomial ifr1 < r 6 rmin;

3rd-degree polynomial ifrmin < r 6 r2;

� Cij

r6 ifr > r2:

8>>>><>>>>: ð3Þ

The two splines are such that the potential and its two first
derivatives are continuous and that rmin is the potential
minimum. This form was used only for the O–O interac-
tions, and the above-mentioned hardening of potential
had in some cases (Jackson1, Jackson2, Karakasidis, Sindz-

ingre, Walker) to be done for the O–U interactions.
The last form of potential found in MD simulations of

UO2, consists into the addition of a Morse potential, used
in order to describe a covalent bond, to a Buckingham
potential. A partial ionization is generally assumed with
such a model. The potential is expressed by

V ijðrÞ ¼ f0ðbi þ bjÞ exp
ai þ aj � r

bi þ bj

� �
� cicj

r6

þ Dij 1� exp bijðr � r�ijÞ
� �h i2

� 1

� �
ð4Þ
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The parameters of the different potentials [2–16] have been
reported in the first part of this work [1], and will not be
repeated here. All short-range potentials were used in this
work with a cut-off of 10.4 Å while the Coulomb interac-
tions were treated with the classical Ewald summation
technique.
2.2. Temperature evolution of different properties

MD simulations were used in order to evaluate the tem-
perature evolution of different lattice properties predicted
by the different potentials developed for UO2. The simula-
tions were done at constant volume and energy (NVE
ensemble) with the GULP code [20] using a box of 768
atoms (4 � 4 � 4 conventional unit cells) which is suffi-
cient, according to the convergence observed with other
box sizes, in order to obtain reliable data. Periodic bound-
ary conditions were applied in order to simulate an infinite
crystal. It allows avoiding surface effects that would appear
for the – inevitably small – system that can be considered in
MD simulations.

The simulations were run at different temperature, vary-
ing from 100 K up to 3000 K, by steps of 100 K. The tem-
perature was controlled by a temperature rescaling
procedure during 1 ps, then the system was equilibrated
during 4 ps. After this, the next 5 ps were used in order
to calculate average values of volume, pressure, energy
and temperature. The timestep used in all simulation was
1 fs.

At each temperature, and for each potential, 7 runs were
performed using 7 different box sizes (chosen to be close to
the 0 bar box size predicted by the potential under consid-
eration). An interpolation of these results provides estima-
tions of various lattice properties: lattice parameter (a0(T)),
isothermal bulk modulus (BT(T)), specific heat (cp(T) and
cV(T)) and Gruneisen parameter (c(T)). The following def-
initions were used

a0ðT Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ðT ; p ¼ 0Þ3

p
BT ðT Þ ¼ �V ðT Þ op

oV

� �
T

CpðT Þ ¼
oE
oT

� �
p

CV ðT Þ ¼
oE
oT

� �
V

cðT Þ ¼ V ðT Þ op
oE

� �
T

ð5Þ

As it was said, the intention was to evaluate all the poten-
tials in the NVE (microcanonical) ensemble, but a problem
appeared with all the shell–core potentials: a rapid decrease
of energy was observed while working in NVE ensemble
(thus at constant energy!). Some tests showed that integrat-
ing the motion of the uranium atoms was problematic
when a shell–core description of U atoms was used. Solu-
tions like increasing the number of iterations used to calcu-
late shells positions or decreasing the timestep have been
tested. The energy drift was reduced but still present, and
at the expense of computing time (up to 10 times slower).
The second way to perform shell–core MD consists into
attributing a small fraction of the ion mass to the shell,
but it also requires smaller timesteps (of the order of
0.1 fs) and therefore longer simulations in order to sample
correctly the shell motion. In this last case, energy could be
conserved.

The solution envisaged was to couple the system to a
Nosé thermostat for all runs with shell–core potentials,
which preserved the computing time. The coupling to a
thermostat does not imply that the extended hamiltonian
will now be conserved, it is even expected that the same
integration problem will appear again. The check of this
could not be done since the extended hamiltonian is not
a standard output of GULP.

It means that, even if the temperature of the runs are
now controlled by a Nosé thermostat, the system evolution
will not sample the NVT ensemble, but rather a pseudo-
NVT (since the average temperature is still controlled), that
we will denote NVeT. Nevertheless, assuming that ergodic-
ity applies to our simulations, the average of any quantity
calculated in, e.g., the NVE and the NVeT ensemble will be
the same in the thermodynamic limit of infinite system size,
as long as E and eT are consistent with each other
(eT ¼ hT iNVE) [21]. This guarantees that our simulations
provide reliable averages. It should, however, be noted that
the fluctuations of e.g. energy obtained in our NVeT will not

be equivalent to the fluctuations in the NVT ensemble
because of the non-conservation of the extended
hamiltonian.

In order to show that ergodicity applies to our simula-
tions, we performed a few MD runs, in the NVE ensemble
under the same conditions as some of our NVeT simula-
tions, in which a small fraction of the ion mass was attrib-
uted to the electron shell.

The averages obtained in both ensemble were in excel-
lent agreement since their variation ranges in the two meth-
ods were overlapping, which indicates our method is
applicable.

2.3. Determination of the melting temperature

2.3.1. Generalities

The melting temperature was determined joining two
‘boxes’, the first one consisting of a solid UO2 phase at a
given temperature, the second one consisting of a liquid
UO2 phase at the same temperature. This liquid phase
was obtained from a run at very high temperature –
22000 K – in order to create an important disorder and
then stabilized for a few ps at the same temperature as
the solid phase. The initial configuration of the runs is
shown on Fig. 2.

During the simulation, the separation surface between
the liquid and solid phase will move. If the system energy
is too low to maintain the liquid phase, the whole system



Fig. 3. Evolution of the amplitude of the structure factor with time, at
3000 K, for the solid and liquid phases.

Fig. 2. Initial configuration of the run for the determination of the melting temperature. Picture obtained with the VMD program [22].
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will become solid. Similarly, if the system energy is suffi-
ciently high, the liquid phase will dominate. There is an
energy range where the two phases can coexist (at least
for a macroscopic system), the temperature being constant
(and called the melting temperature). In that case the sep-
aration surface will move until equilibrium is reached.
For the smallest systems considered here the separation
surface was sometimes energetically costly (because split
over a small number of atoms) and only one phase should
be finally observed, if the simulation is long enough. Two
techniques have been used to confirm the equilibrium of
the system. The first one simply consists in the visualization
of the atoms trajectory, the solid phase being easily identi-
fiable. The stabilisation of the surfaces between the solid
and liquid phases indicates that equilibrium is reached.
The second technique considered in this work was to study
the structure factor, or more precisely, its squared ampli-
tude jS0að~kÞj

2 for the U and O sublattices. We used the nota-
tion a = U or O sublattices;~k = reciprocal vector of the fcc
lattice. The structure factor is defined as

Sð~kÞ ¼
XNu:c:

n¼1

fn expði~k � ~rnÞ ð6Þ

where the sum concerns all atoms in the unit cell, and fn is
the atomic scattering factor of atom n. In our study we will
compute the amplitude of the structure factor for the whole
system (i.e. not for a unit cell), considering the U and O
sublattices separately. This quantity will be called
jS0að~kÞj

2, where a refers to the U or O atoms, and is defined
in Eq. (7). It has been normalized in order to compare more
easily systems of different sizes.

jS0að~kÞj
2¼ 1

f 2
a N 2

XN

n¼1

fa cosð~k �~rnÞ
 !2
24 þ

XN

n¼1

fa sinð~k �~rnÞ
 !2

35
ð7Þ

This quantity will be strictly equal to 1 only for a perfect
crystal at 0 K and for~k being a reciprocal vector of the lat-
tice (fcc lattice in the case of UO2).
Evaluations of jS0að~kÞj
2 for solid UO2 at 3000 K provide

values comprised between 0.7 and 0.8 in the case of U
atoms and less, between 0.3 and 0.4, for the O atoms
because of their higher mobility (due to their lower mass).
The increase of mobility above �2300–2600 K was often
reported in previous simulations of UO2 [4,13,18,12], our
results confirm the observations of Walker [4] and Lindan
and Gillan [18] that despite their mobility, oxygen atoms
remain ordered.

When the liquid phase is considered, jS0að~kÞj
2 is very

close to 0 (less than 0.02) for both sublattices. This is illus-
trated on Fig. 3 for solid and liquid UO2. The evolution of
jS0U ð~kÞj

2 with time for the system of Fig. 2 is plotted on
Fig. 4 for different initial temperatures. The identification
of a solid phase or a liquid phase is quite straightforward.
2.3.2. Characteristics of the MD runs

For reasons discussed in Section 1, the melting problem
has was studied considering only rigid ion potentials. Both
MD codes GULP and Moldy [23] can therefore be consid-



Fig. 4. Evolution of the amplitude of the Structure factor for the U
sublattice – Basak potential. Solidification appears for the runs below
3200 K, it can be noted that the system can stay for a while with two
phases (80 ps at 3200 K) before complete solidification. At 3400 K the two
phase still coexist after 200 ps, in the same proportion as initially, as is can
be seen during the run visualization or noting the conservation of the
structure factor; longer simulations will probably finally favorise one
phase because of the energy cost to maintain an interface.

Fig. 5. Smoothing of the instantaneous temperature curve with a bezier
curve.
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ered. We preferred to perform the MD simulations with
Moldy because Moldy allows to work at constant stress
and energy while maintaining the angles of the simulation
box at 90� (NPH ensemble), which is needed for simula-
tions of a liquid phase. In addition Moldy is more efficient
for large systems regarding the computing time.

The NPH ensemble was preferred to the NPT ensemble.
Indeed imposing the temperature during the whole system
equilibration time implies that the final state of the system
consists of only one phase except when the system is
exactly at the melting temperature, at least macroscopi-
cally. When the system energy is imposed, it is possible,
because of the latent heat, to stay in the energy range where
the melting proceeds. In that case both phases will coexist.
For very small systems, like those used in MD, it is prob-
ably energetically more favorable to have only one phase,
but the timescale to reach this state can become very long,
as can be seen e.g. on Fig. 10.

The system we simulated consisted of a 5 � 5 � 5 con-
ventional unit cell solid phase system joined to a liquid
phase system having the same physical dimension since
the dimension of the contact face must be the same in order
to apply periodic boundary conditions.

The temperature was controlled during the first 0.4 ps by
a velocity rescaling procedure (to let the atoms at the inter-
face equilibrate removing their excess energy), then the run
proceeded at constant energy for 200 ps. The timestep of
the simulations was 2 fs.

As the runs sample the NPH ensemble, the final temper-
ature of the run is not imposed. It is difficult to provide one
value per run as temperature fluctuations are inherent to
the dynamics of finite-size systems. Only the average value
of the ‘instantaneous’ temperature has a physical meaning.
However when looking carefully at our simulations we
could observe that, near the melting temperature, supple-
mentary (occurring on larger time-scales) variations of
temperature occured. In order to damp the rapid fluctua-
tions of temperature, the temperature curve has been
smoothed (in our case with bezier curves, see Fig. 5) and
we will provide the minimum and maximum of this
smoothed curve over the equilibrated part of the simula-
tion. These variations are also given in the case where only
one phase is present, in order to appreciate the supplemen-
tary variations of amplitude when two phases coexist.
These larger fluctuations of temperature (observable dur-
ing the first 180 ps of the run illustrated on Fig. 5) occur
at the same time as the solid–liquid interface is moving.
2.3.3. Sensitivity

A test of sensitivity to the ensemble used and to the sys-
tem pressure was made with NVE simulations of the sys-
tem for different volumes imposed; and another one to
the box size have been made in order to assess the intrinsic
validity of our results. It appears that a variation of +10%
of the liquid phase length, keeping the same number of
atoms, results in a decrease of the system pressure to
�1.5 GPa, and a decrease of 250–400 K of the predicted
melting temperature. Also a large void region was formed
(to compensate for the created empty space) around which
many point defects could be found, as illustrated on Fig. 6.

The second test concerns the sensitivity of the predicted
temperature to the size of the system. We did not expect to
obtain different predictions of the melting temperature, but
rather to observe a different behaviour of the interface.
Indeed for the smallest systems the ratio of the energy of
the separation surface per atom can be quite high and
the system will naturally tend to favour the growth of
one of the phases. For larger systems, the interfacial energy
is relatively less important to the total energy of the system
and the coexistence of liquid and solid UO2 can become
energetically possible. It also appeared that the simulations



Fig. 6. Formation of a void during the solidification process when the volume is kept constant and larger than the volume at zero pressure. Picture
obtained with the VMD program [22].
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of large systems would require longer simulated times in
order to achieve equilibration, particularly near the melting
temperature. The choice of a (5 � 5 � 5 unit cells solid pha-
se + liquid phase of an equivalent size) seems thus a good
compromise in view of the accuracy of the results and the
computing time.

The results of this sensitivity study can be found in
Tables 1 and 2 for two of the potentials we considered:
Table 1
Sensitivity test to the box size – temperature (in K) range after
equilibration

Initial temperature (K) Box size

Small Normal Large

3000 3455 ± 35 3300 ± 30 3450 ± 20

3200 3660 ± 30 3525 ± 25 3630 ± 15

3400 3810 ± 30 3540 ± 60 3540 ± 40

3500 3400 ± 35 3540 ± 60 3595 ± 35

3600 3510 ± 20 3460 ± 20 3500 ± 20
3800 3660 ± 30 3635 ± 20 3650 ± 20

Calculations done with Moldy in the NPH ensemble, using the Basak

potential. Bold data: coexistence of the solid and liquid phase, italic data:
solidification of the system, normal data: liquefaction of the system.

Table 2
Sensitivity test to the box size – temperature (in K) range after equilibration

Initial temperature (K) Box size

Small Normal

3000 3425 ± 25 3340 ± 25

3200 3575 ± 25 3510 ± 20

3400 3765 ± 25 3625 ± 25

3500 3290 ± 35 3500 ± 70

3600 3400 ± 30 3425 ± 20
3800 3580 ± 35 3570 ± 20

Calculations done with Moldy in the NPH ensemble, using the Morelon po
solidification of the system, normal data: liquefaction of the system.

a For the largest system, stabilisation of temperature was generally not reac
lower) limit.
Basak and Morelon. The system sizes envisaged – because
of the PBC the important parameter is the length in the
x-direction, i.e. the thickness of the solid and liquid phase
– consisted of 4 � 4 � 4, 5 � 5 � 5, 8 � 8 � 4, 16 � 8 � 4
and 20 � 5 � 5 unit cells solid phase and a liquid phase
of an equivalent size. These systems are, respectively, called
‘small’, ‘normal’, ‘large’, ‘X-large’ and ‘XX-large’. They
contain, respectively, 1344, 2625, 5376, 10752 and 42000
atoms.
3. Results

3.1. Lattice parameter evolution with temperature

Lattice parameter evolution with temperature has been
computed for all potentials from 100 K to 3000 K and
compared to the experimental curve proposed by Fink
[24]. The comparison is plotted in Fig. 7. Three tendencies
can be observed. A few potentials – Arima2, Basak, Cat-

low2, Meis2, Morelon – reproduce quite well the experi-
mental curve, and its slope, up to 3000 K. All these
potentials, with the exception of Meis2, are rigid ion poten-
tials with non-formal charges. A second series of potentials
– Arima1, Catlow1, Grimes, Jackson1, Jackson2, Karakasi-
Large X Large XX Large a

3350 ± 15 3280 ± 10 >3150

3530 ± 25 3470 ± 5 >3220

3520 ± 30 3500 ± 20 3310 ± 5
3495 ± 50 3440 ± 40 <3360
3540 ± 30 3530 ± 45 <3435
3500 ± 15 3565 ± 10 <3510

tential. Bold data: coexistence of the solid and liquid phase, italic data:

hed after 200 ps, therefore we provide the final temperature as upper (or



Fig. 7. Lattice parameter evolution with temperature for all potentials. Experimental curve from Fink [24]. In this and the following figures, crosses will be
used for rigid ion potentials with non-formal charges, open symbols for rigid ion potentials with formal charges and full symbols for shell–core potentials.
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dis, Sindzingre, Tharmalingam1, Walker, Yamada – could
reproduce the good slope up to 2000 K, but do not repro-
duce well the anharmonic behaviour at higher tempera-
tures. They also present a larger scatter for lattice
parameter at 0 K [1]. These potentials are both rigid ion
and shell–core potentials. The other potentials do not pre-
Fig. 8. Specific heat at constant volume evolution with temperature for al
dict the correct slope – Lewis_a – or they could not be run
at high temperatures, even with the addition of the repul-
sive term of Eq. (2) – Busker, Lewis_b, Lewis_c, Tharmalin-

gam2. The coefficients used should perhaps be modified
according to the strength of the attraction, but their adap-
tation for each problematic potential would have been very
l potentials. Experimental curve (at constant pressure) from Fink [24].



Fig. 9. Specific heat at constant pressure evolution with temperature for all potentials. Experimental curve from Fink [24].
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time-consuming; we preferred to test the approach with a
fixed set of coefficients and not to continue with those
potentials where the approach failed.
3.2. Specific heat evolution with temperature

Specific heat at constant volume and constant pressure
have been calculated, and compared to the experimental
curve at constant pressure recommended by Fink [24].
The comparisons are, respectively, plotted in Fig. 8 (CV)
and Fig. 9 (Cp).

The estimation of CV by all potentials is almost a con-
stant and equal to the classical value of Dulong and Petit,
over the whole temperature range. In the lower tempera-
ture region the predictions fail to reproduce the correct
behaviour of CV because the quantum mechanical aspects
are not included in the classical molecular dynamics
approach. The behaviour of specific heat at low tempera-
ture can, nevertheless, be determined from the phonon
spectrum obtained from static calculations. At high tem-
peratures, an increase of specific heat is observed for some
potentials – mainly rigid ion potentials with non-formal
charges, but also some shell–core potentials. This is
explained (and visually confirmed) by the creation of tem-
porary oxygen Frenkel pairs. It has also been suggested [25]
that Schottky defects can contribute to the specific heat.
This contribution cannot be modelled by MD because of
the periodic boundary conditions: no surfaces exist to
accommodate for the excess atoms.

The temperature evolution of specific heat at constant
pressure is shown on Fig. 9. Since electronic excitation is
also not taken into account by classical molecular dynam-
ics, one may expect important difference between the exper-
imental curve and the predictions of the potentials at
elevated temperature. Apart from the potentials presenting
oxygen Frenkel pairs formation, three tendencies can be
observed on the graph. One category of potentials presents
a large increase of Cp at high temperature. A second cate-
gory is close to the previous one up to 2000 K, but the spe-
cific heat increase at higher temperature is less pronounced.
The third category of potentials presents a too small
increase of Cp over the whole temperature range.

These categories are exactly the same as mentioned for
lattice parameter expansion (Section 3.1). This is evident
if one considers the contribution to Cp from lattice
expansion

Cp ¼ CV þ 9a2VT bT ð8Þ

where a is the thermal expansion coefficient, V the molar
volume, T the temperature and bT the isothermal bulk
modulus. The three categories correspond to the three dif-
ferent predictions of the thermal expansion coefficient a re-
ported in Section 3.1.
3.3. Isothermal bulk modulus evolution with temperature

Isothermal bulk modulus evolution with temperature is
reported on Fig. 10 and compared to the experimental
curve determined by Martin [26]. Its behaviour is well
reproduced by all potentials except the Morelon (that was
fitted on defect properties) and Sindzingre potential. The
Grimes potential whose parameters determination was the-
oretical overestimates the value of bulk modulus, as it was
already observed in the static calculation part. However,
the slope of the experimental curve is well reproduced by
this potential. Most rigid ion potentials with non-formal



Fig. 10. Isothermal bulk modulus evolution with temperature for all potentials. Experimental curve from Martin [26].

74 K. Govers et al. / Journal of Nuclear Materials 376 (2008) 66–77
charges were fitted to this type of curves, it is thus quite
logical that they show the best agreement with experiments.
3.4. Gruneisen parameter evolution with temperature

Gruneisen parameter evolution with temperature is
reported on Fig. 11. No experimental evolution of this
parameter is provided for comparison, because we were
unable to find experimental values of Gruneisen parameter
evolution; and because at high temperature, electronic exci-
tation would modify this parameter as for specific heat.
Fig. 11. Gruneisen parameter evolution
The comparison shows that all potentials predict the same
tendency, a slow decrease of this parameter with tempera-
ture. Only the Arima2 potential predicts an almost constant
value over the whole temperature range, and the Yamada

potential shows a larger decrease at high temperature.
3.5. Melting temperature

The melting temperature has been computed for a few
rigid ion potentials: Basak, Karakasidis, Morelon, Walker

and Yamada. The shell–core potentials were discarded here
with temperature for all potentials.



Table 3
Temperature (in K) range for the different potentials

Initial temperature Potential

Basak [13] Karakasidis [9] Morelon [14] Walker [4] Yamada [12]

2800 3140 ± 20 3035 ± 25 3145 ± 20 3070 ± 15 3135 ± 20

3000 3300 ± 30 3100 ± 50 3340 ± 25 3270 ± 25 3335 ± 20

3050 3145 ± 50

3100 3170 ± 50

3150 3205 ± 45

3200 3525 ± 25 3075 ± 25 3510 ± 20 3360 ± 40 3525 ± 15

3300 3610 ± 25 3585 ± 20

3350 3640 ± 25 3610 ± 20

3400 3540 ± 65 3220 ± 20 3625 ± 25 3435 ± 45 3740 ± 20

3450 3540 ± 65 3710 ± 20a 3460 ± 45

3500 3545 ± 60 3500 ± 65 3350 ± 20
3550 3440 ± 15 3320 ± 25 3530 ± 50

3600 3460 ± 20 3430 ± 25 3425 ± 20 3400 ± 25 3885 ± 25

3800 3640 ± 20 3635 ± 20 3570 ± 20 3580 ± 25 4065 ± 40

4000 3880 ± 20 3840 ± 30 3810 ± 20 3520 ± 30 4155 ± 55

4100 4085 ± 30
4200 4195 ± 35
4300 4270 ± 25
4400 4360 ± 25
4500 4405 ± 25

Calculations done with Moldy in the NPH ensemble. Bold data: coexistence of the solid and liquid phase, italic data: solidification of the system, normal
data: liquefaction of the system.

a In a first time, an equilibrium of the two phases was observed, for which the temperature range was 3520 ± 45 K.
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because the computing time they require would have been
too long. We proceeded by varying the initial temperature
of the simulations and looking (by visualisation of the
atoms trajectory and computing the structure factor ampli-
tude) which state is reached by the system after 200 ps. As
argued in the previous section, we report in Table 3 the
range of variation of the smoothed curve of temperature,
once it became visually stable. These predictions have to
be compared to the experimental value of 3150 ± 20 K
for UO2.00 [27]. For some runs (Karakasidis potential with
an initial temperature of 3000–3150 K and Walker poten-
tial with an initial temperature of 3200 K) it was not clear
whether an equilibrium was reached at the end of the sim-
ulation or not. It is possible that a longer simulation would
end with a solidification of the box.

4. General discussion

The combination of energy minimisation (see [1]) and
molecular dynamics simulation provides information on
the equilibrium and non-equilibrium properties of the
potentials. It appeared from the static calculations that lat-
tice properties (lattice parameter, elastic properties) are
quite well reproduced by all potentials, mainly because
potentials were fitted to these data. This fitting seems thus
sufficient to reproduce the width and depth of the energy
well around an atom in its regular lattice position The
MD simulations provide information on the anharmonicity
of the potentials, through the thermal expansion coefficient
and specific heat evolution. Finally the various defect ener-
gies provide information and an evaluation of the inter-
atomic potential when atoms are very far from their
regular lattice position.

Lattice parameter expansion and specific heat evolution
show that the potentials reproducing the best the anharmo-
nicity are rigid ion models with non-formal charges –
Arima2, Basak, Morelon – and some shell–core potentials
– Catlow2, Meis2. Specific heat at constant volume indi-
cates which potentials predict the apparition of oxygen
Frenkel pairs with an increase of this value at high temper-
ature. The potentials for which the largest increase of CV is
observed are again all rigid ion potentials with non-formal
charges (including this time the Yamada potential); other
potentials also predict oxygen Frenkel pair formation,
but to a lesser extent: Catlow1, Jackson1, Jackson2. There
is no direct one-to-one relationship between the Frenkel
pair formation energy (derived in [1]) and the calculated
Frenkel pair density in MD runs at elevated temperature.
It is, however, possible that the oxygen Frenkel pair forma-
tion energy is lowered at high temperatures for some of the
potentials because of lattice expansion and/or thermal
agitation.

All potentials yield generally coherent results for bulk
modulus and Gruneisen parameter evolution. Two poten-
tials slightly overestimated or underestimated bulk modu-
lus in static calculations. In the MD simulations it
appeared that the Grimes potential could, nevertheless,
reproduce the slope of bulk modulus evolution with tem-
perature, which was not the case for the Morelon potential.

The simulations of the coexistence of the liquid and solid
phases showed that the rigid ion potentials used for these
simulations (Basak, Karakasidis, Morelon, Walker and
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Yamada) predict quite accurately the melting temperature.
The Karakasidis potential presents the best agreement; the
Basak, Morelon and Walker potentials overpredict this
value by 300–400 K. Only the Yamada potential seems to
overpredict the melting temperature by a larger value, of
about 900 K. Our simulations considered atoms only in
the charge states +4 and �2 for, respectively, U and O
atoms. Electronic excitations that would normally appear
under the form of U3+ and U5+ ions cannot be considered
in MD simulations (except by manually adding those
atoms, but the electrons and holes will not be able to jump
from one site to the other site). Their presence would
increase the local disorder and it is expected that the inclu-
sion of such effect would reduce the predicted melting
temperature.

Our study indicates that rigid ion potentials with non-
formal charges provide the best agreement with experimen-
tal data, and that they can reproduce the anharmonicity of
the real material. These potentials were generally fitted on
this type of curve, while shell–core potentials were gener-
ally developed in order to reproduce static properties.
Anharmonicity effects are thus not included in the fitting
procedure. However rigid ion potentials with non-formal
charges are not the best choice under every circumstances:

� A study of Phillpot et al. [28] which compared the pre-
dictions of the Yamada and Grimes potentials with
regard to thermal conductivity lead to a more mixed
conclusion. In his study the Yamada potential showed
a better reproduction of lattice parameter evolution
compared to the Grimes potential, in agreement with
our study, but with regard to thermal conductivity, the
anharmonic behaviour was better reproduced by the
Grimes potential.
� Difficulties will be encountered with rigid ion potentials

when considering charged defects and charged impuri-
ties. In the case of charged defects, the results obtained
in the first part of this work [1] indicated the importance
of maintaining local electroneutrality by modifying the
charge of the surrounding uranium atoms, creating
localized electron or holes. The problem is: do the
charge attributed to these localized electrons or holes,
or more generally to any foreign atom introduced in
the lattice, have to be considered as having the same ion-
icity fraction as the regular U or O atoms, or as having
another ionicity fraction. In this perspective the use of
formal charges seems to be necessary.

5. Conclusions

This work based on molecular dynamics simulations
completes the comparison of interatomic developed for
UO2 made with static calculations in order to assess their
range of applicability. We have computed the evolution
of different thermodynamic properties – lattice parameter,
specific heat, bulk modulus and Gruneisen parameter –
as a function of temperature, for all potentials available
in the literature. For some of the potentials we also com-
puted the melting temperature. It appeared from this study
that there is no ‘universally good’ potentials.

Rigid ion potentials with non-formal charges generally
predict the best agreement with experiment, both in terms
of static and dynamic calculations. This can be, at least
partly, explained by the fitting of these potentials on ther-
mal evolution curves rather than on elastic properties at
low temperatures. Some shell–core potentials also show
good results. The drawback of potentials with non-formal
charges will appear when considering charged defects
(including impurities) since it raises the problem of assum-
ing (or not) the same ionicity of the defect and of the
matrix.

In these perspectives, potentials with formal charges
seem easier to handle.

The choice of a potential is thus a difficult compromise
between its range of applicability based on the different
results shown and its ‘physically acceptable’ applicability.
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